maxSubSum各自是最大子序列和的4中java算法实现。
第一种算法执行时间为O(N^3),另外一种算法执行时间为O(N^2),第三种算法执行时间为O(nlogn),第四种算法执行时间为线性N
public class Test { public static void main(String[] args) { int[] a = {-2, 11, -4, 13, -5, -2};//最大子序列和为20 int[] b = {-6, 2, 4, -7, 5, 3, 2, -1, 6, -9, 10, -2};//最大子序列和为16 System.out.println(maxSubSum4(a)); System.out.println(maxSubSum4(b)); } //最大子序列求和算法一 public static int maxSubSum1(int[] a){ int maxSum = 0; //从第i个開始找最大子序列和 for(int i = 0; i < a.length; i++) { //找第i到j的最大子序列和 for(int j = i; jmaxSum) { maxSum = thisSum; } } } return maxSum; } public static int maxSubSum2(int[] a) { int maxSum = 0; for(int i = 0; i < a.length; i++) { //将sumMax放在for循环外面。避免j的变化引起i到j的和sumMax要用for循环又一次计算 int sumMax = 0; for(int j = i; j < a.length; j++) { sumMax += a[j]; if(sumMax>maxSum) { maxSum = sumMax; } } } return maxSum; } //递归,分治策略 //2分logn,for循环n,固O(nlogn) public static int maxSubSum3(int[] a) { return maxSumRec(a, 0, a.length - 1); } public static int maxSumRec(int[] a, int left, int right) { //递归中的基本情况 if(left == right) { if(a[left] > 0) return a[left]; else return 0; } int center = (left + right) / 2; //最大子序列在左側 int maxLeftSum = maxSumRec(a, left, center); //最大子序列在右側 int maxRightSum = maxSumRec(a, center+1, right); //最大子序列在中间(左边靠近中间的最大子序列+右边靠近中间的最大子序列) int maxLeftBorderSum = 0, leftBorderSum = 0; for(int i = center; i>=left; i--) { leftBorderSum += a[i]; if(leftBorderSum > maxLeftBorderSum) maxLeftBorderSum = leftBorderSum; } int maxRightBorderSum = 0, rightBorderSum = 0; for(int i = center+1; i<= right; i++) { rightBorderSum += a[i]; if(rightBorderSum > maxRightBorderSum) maxRightBorderSum = rightBorderSum; } //返回最大子序列在左側,在右側。在中间求出的值中的最大的 return max3(maxLeftSum, maxRightSum, maxLeftBorderSum + maxRightBorderSum); } public static int max3(int a, int b, int c) { return a > b?
(a>c?a:c):(b>c?
b:c); } //不论什么a[i]为负时,均不可能作为最大子序列前缀;不论什么负的子序列不可能是最有子序列的前缀 public static int maxSubSum4 (int [] a) { int maxSum = 0, thisSum = 0; for(int j = 0; j < a.length; j++) { thisSum += a[j]; if(thisSum>maxSum) maxSum = thisSum; else if (thisSum < 0) thisSum = 0; } return maxSum; } }